Repeated Patterns in Proper Colorings

نویسندگان

چکیده

For a fixed graph $H$, what is the smallest number of colors $C$ such that there proper edge-coloring complete $K_n$ with containing no two vertex-disjoint color-isomor...

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proper Bounded Edge-Colorings

For xed integers k 2, and for n-element sets X and colorings : X] k ?! f0; 1; : : :g where every color class is a matching and has cardinality at most u, we show that there exists a totally multicolored subset Y X with jY j max (c 1 n k u 1 2k?1 ; c 2 n k u 1 2k?1 ln u p n 1 2k?1) where c 1 ; c 2 > 0 are constants. This lower bound is tight up to constant factors for u = (n 1=2+) for every > 0....

متن کامل

Maximizing proper colorings on graphs

Article history: Received 17 November 2014 Available online xxxx

متن کامل

Completing Partial Proper Colorings using Hall's Condition

In the context of list-coloring the vertices of a graph, Hall’s condition is a generalization of Hall’s Marriage Theorem and is necessary (but not sufficient) for a graph to admit a proper list-coloring. The graph G with list assignment L satisfies Hall’s condition if for each subgraph H of G, the inequality |V (H)| 6∑σ∈C α(H(σ, L)) is satisfied, where C is the set of colors and α(H(σ, L)) is t...

متن کامل

Proper Bounded Edge - Colorings ( Extended Abstract )

For an n-element set X and a proper coloring ∆: [X] −→ {0, 1, . . .} where each color class is a matching with cardinality bounded by u, we show that there exists a totally multicolored subset Y ⊆ X with |Y | ≥ max { c1 · ( n/u ) 1 2k−1 , c2 · ( n/u ) 1 2k−1 · ( ln ( u/ √ n )) 1 2k−1 } This bound is tight up to constant factors for u = ω(n ) for any > 0. Moreover, for fixed k, we give a polynom...

متن کامل

Note on Gy. Elekes's Conjectures Concerning Unavoidable Patterns in Proper Colorings

A counterexample is presented to Gy. Elekes’s conjecture concerning the existence of long 2-colored paths in properly colored graphs. A modified version of the conjecture is given and its connections to a problem of Erdős Gyárfás and to Szemerédi’s theorem are examined. The coloring of the edges of a simple undirected graph is considered proper if adjacent edges have different colors. To solve ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2021

ISSN: ['1095-7146', '0895-4801']

DOI: https://doi.org/10.1137/21m1414103